Protein Structure

Overview

- Proteins are complex molecules that play crucial roles in the body
- They're made up of amino acids and are the building blocks of life.

Protein structure can be classified into four levels:

- 1. Primary Structure
- 2. Secondary Structure
- 3. Tertiary Structure
- 4. Quaternary Structure

Secondary: Alpha Helix

Structure: Forms a right-handed helical structure.

Backbone Conformation: The peptide backbone twists into a spiral, resembling a *coiled spring*.

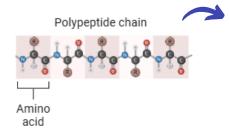
Hydrogen Bonding: Stabilized by hydrogen bonds between the carbonyl oxygen of one amino acid and the amide hydrogen of an amino acid three residues away.

Stability: Relatively stable due to the regular hydrogen bonding pattern and compact structure.

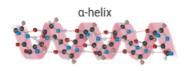
Amino Acid Side Chains: Project outward from the helix, allowing for potential interactions with other molecules.

Secondary: Beta Sheet

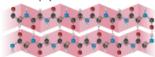
Structure: Consists of extended strands of peptide chains connected by hydrogen bonds forming a *flat*, *sheet-like structure*.


Hydrogen Bonding: Stabilized by hydrogen bonds between adjacent strands, with the carbonyl oxygen of one strand interacting with the amide hydrogen of an adjacent strand.

Directionality: Strands can be *parallel* (all N-termini aligned) or *antiparallel* (alternating N- and C-termini).


Amino Acid Side Chains: Project alternately above and below the plane of the sheet.

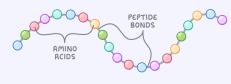
Stability: Can be stable, especially in the presence of other secondary structure elements like alpha helices.


Primary structure

Secondary structure

β-pleated sheet

Tertiary structure


Quaternary structure

Sourced from: https://www.wikidoc.org/index.php/Filter_binding_ass

Primary Structure

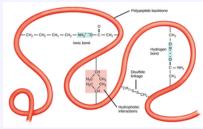
Primary Structure: sequence of amino acids that make up a protein



iourced from: https://cognitoedu.org/coursesubtopic/b3-alevel-ocr_mkVyUHhz

Secondary Structure

Secondary Structure: the coiling or folding of the amino acid chain


- Stabilized by hydrogen bonds between the amide and carbonyl groups of the backbone
- Examples include alphahelices and beta-sheets

Tertiary Structure

Tertiary Structure: 3D structure of a protein

- Formed by the further bending and folding of the protein
- Determined by a variety of bond interactions between side chains:
 - Hydrogen bonds
 - o lonic bonds
 - o Disulfide bridges

Sourced from: https://www.khanacademy.org/science/biology/macromolecules/proteins-and-amino-acids/a/orders-of-protein-struct

Quaternary Structure

Quaternary Structure: structure formed by the assembly of multiple protein subunits

• Not all proteins have a quaternary structure

V LETTER TO THE STUDENT

Dear Student,

Thank you for opening this Biochemistry 2280A guidebook. This resource has been created by the Education Team at WebStraw. The Education Team consists of students that have previously taken and/or are currently taking Biochemistry 2280A.

Created by students for other students, this resource aims to provide a comprehensive view of material taught within this course. Our goal is to help students develop, solidify, and refine their understanding of course content. Our resource is also open access meaning there are no financial or legal barriers to students who wish to access and use our resource.

To maximize the benefits of this resource, we recommend that you read carefully through the topics, focusing on *bolded terminology*, *compound structures*, *and diagrams*. Although this resource ideally will cover all testable content as of the 2024-2025 academic year, we cannot guarantee this and strongly encourage you to cross-reference with class material and notes.

Disclaimer

This resource is supplementary to your course content and is not meant to (1) replace any of the resources provided to you by your instructor nor is it meant to (2) be used as a tool to learn the course material from scratch. We assume that students who use this resource will have a basic understanding of the course content. This resource does not contain everything you need to know for your evaluations. Please refer to the course material provided by your instructors if there are any discrepancies between our resource and your course content.

We appreciate you using our resource! Best of luck on your exams:)

-The WebStraw team

Note to Instructors: If this resource has been created for your course and you would like to collaborate with us, please email us at team@webstraw.org

biochem 2280.

BROUGHT TO YOU BY WEBSTRAW

a handmade guide

Ali Alimorad Sara Cordoba Reyes Lucy Yang Quynh Phi