What are Enzymes?

- Enzymes are biological catalysts
 - Most enzymes are proteins
- Enzymes can do post-translational modifications:
 - Modifications to proteins after they are translated
 - Modifications can alter stability, signalling, protein folding, secretion, binding to other molecules or solubility.
- · Examples:
 - Phosphorylation by kinases these are enzymes that catalyze the transfer of phosphate groups to substrate molecules
 - <u>Conversion of maltose into glucose</u> the enzyme maltase converts maltose to glucose
 - <u>Proteolysis</u> peptidases cleave peptide bonds between amino acids in proteins

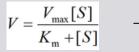
Enzymatic Inhibition

- · Reversible: Competitive
 - o Inhibitor has similar structure to substrate/product
 - o Inhibitor binds to the active site of the enzyme
 - o Blocks substrate access
 - Affects Km not Vmax
- Irreversible: Allosteric Inhibition
 - o Cooperative
 - Binding to one site influences binding at other site
 - o Conformational
 - Binding changes conformation of enzyme to affect its activity

Enzyme Characteristics

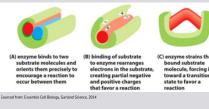
- Specific
- Low error
- Rapid (accelerate reactions by a large magnitude)
- Can work under mild conditions

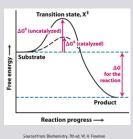
What are Co-Factors?


- Cofactors are non-protein chemical compounds that bind to apoenzymes to turn them into the holoenzyme form, i.e. the fully activated form
 - Cofactors are essential for enzyme's activity and can act synergistically to increase the rate of reaction

Created using BioRender.com

Enzyme Kinetics


- Michaelis-Menten Equation
 - Mathematical relationship between the rate of an enzyme-catalyzed reaction and the concentration of the substrate.
- Vo = initial velocity
- Vmax = maximal velocity
- [S] = concentration of substrate
- Km = Michaelis constant



transformed into a linear equation

Enzymes as Catalysts

- What is the transition state of a reaction?
 - Intermediate state in the reaction between a reaction's starting reagents (substrate) and products.
 - Highest energy point where bonds are in between breaking and forming
- How do enzymes function as a catalyst for reactions?
 - Enzymes reduce the activation energy of biological reactions → lowering the free energy of the transition state
- Mechanisms of Transition State Lowering

 $\frac{1}{t_0} = \left(\frac{K_{\rm M}}{V_{\rm max}}\right) \frac{1}{[S]} + \frac{1}{V_{\rm max}}$ Lineweaver-Burk plot $\frac{1}{V_0}$ $\frac{1}{V_{\rm max}}$ Slope = $\frac{K_{\rm M}}{V_{\rm max}}$

Sourced from: John Wiley & So

V LETTER TO THE STUDENT

Dear Student,

Thank you for opening this Biochemistry 2280A guidebook. This resource has been created by the Education Team at WebStraw. The Education Team consists of students that have previously taken and/or are currently taking Biochemistry 2280A.

Created by students for other students, this resource aims to provide a comprehensive view of material taught within this course. Our goal is to help students develop, solidify, and refine their understanding of course content. Our resource is also open access meaning there are no financial or legal barriers to students who wish to access and use our resource.

To maximize the benefits of this resource, we recommend that you read carefully through the topics, focusing on *bolded terminology*, *compound structures*, *and diagrams*. Although this resource ideally will cover all testable content as of the 2024-2025 academic year, we cannot guarantee this and strongly encourage you to cross-reference with class material and notes.

Disclaimer

This resource is supplementary to your course content and is not meant to (1) replace any of the resources provided to you by your instructor nor is it meant to (2) be used as a tool to learn the course material from scratch. We assume that students who use this resource will have a basic understanding of the course content. This resource does not contain everything you need to know for your evaluations. Please refer to the course material provided by your instructors if there are any discrepancies between our resource and your course content.

We appreciate you using our resource! Best of luck on your exams:)

-The WebStraw team

Note to Instructors: If this resource has been created for your course and you would like to collaborate with us, please email us at team@webstraw.org

biochem 2280.

BROUGHT TO YOU BY WEBSTRAW

a handmade guide

Ali Alimorad Sara Cordoba Reyes Lucy Yang Quynh Phi