#7: Carbohydrate Structure

BIOCHEM2280

Carbohydrate Functions

The main functions of carbohydrates are:

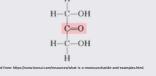
- 1. Sources of energy (Polysaccharides are energy storage molecules; monosaccharides are oxidized to form ATP)
- 2. Used for structural purposes (e.g. Cellulose)
- 3. Part of nucleotides
- 4. Linked to lipids or proteins on the surfaces of cells to protect the cells, make them slippery, and for recognition purposes

Monosaccharides

- Monosaccharides: Simplest sugars with molecular formula (CH2O)n, where n = 3 to 7
- Monosaccharides can be classified by carbon atoms:
 - Triose: 3 carbons (3C)
 - Tetrose: 4 carbons (4C)
 - Pentose: 5 carbons (5C)
 - Hexose: 6 carbons (6C)
 - o Heptose: 7 carbons (7C)

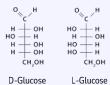
Created using BioRender.com

Fischer Projections


- The most common way you'll see monosaccharides depicted is using Fischer projections
- Fischer projections depict stereochemistry:
 - o Horizontal bonds: towards the viewer
 - o Vertical bonds: away from the viewer

- - Aldose: Carbonyl group at the end (Aldehyde group)

o Ketose: Carbonyl group not at the end (Ketone group)



Fischer Projections Cont'd

- Carbon numbering in monosaccharides starts from the end closest to the carbonyl group which will be given the designation of carbon 1 (C1)
 - The **anomeric carbon** is the carbon in the carbonyl group in a Fischer projection

- Using Fischer projections, monosaccharides can be classified as D and L isomers:
 - Determined by hydroxyl group orientation at the chiral carbon farthest from the carbonyl (highest numbered chiral carbon)
 - D isomers are common in biological sugars
 - In a Fischer projection, D isomers have the hydroxyl group on the right while L isomers have it on the left
 - L isomers are mirror images of their D counterparts

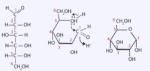
 Epimers are monosaccharides that differ in stereochemistry at only one chiral carbon in Fischer projections (e.g. Glucose and mannose)

Cyclic Carbohydrates

- Pentoses and hexoses in cells predominantly exist in ring or cyclic structures
- Haworth projections are commonly used to depict these cyclic forms:

D-Glucopyranose

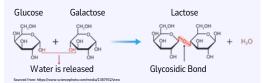
- Ring formation involves a hydroxyl group reacting with the anomeric carbon (C*)
- Monosaccharide rings exist in alpha (α) or beta (β) configuration based on stereochemistry at the C*
- α or β configuration determination:
 - Compare the position of hydroxyl at the anomeric carbon with the highest-numbered carbon
 - o If the hydroxyl on the anomeric carbon is on the same side as the highest numbered carbon, the sugar is in β configuration:



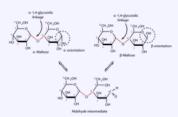
o If the hydroxyl on the anomeric carbon is on the opposite side to the highest numbered carbon, the sugar is in α configuration

Cyclic Carbohydrates Cont'd

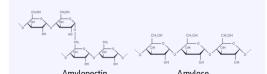
- When rings are formed a random configuration is taken up (Either α or $\beta)$
- Cyclization reaction are **reversible** which leads to conversion between α and β forms in solution


This process isn't permanent, the ring can open up again and reform in a different configuaration

 Despite appearance, atoms in the ring of a cyclic monosaccharide do not all lie in the same plane



The highlighted -OH group is above the plane whereas the -H attached to the same carbon is below


 Monosaccharides can condense in a reaction to form disaccharides, which changes naming conventions

- The disaccharide is designated as α or β depending on the orientation of the -OH on the free anomeric carbon
- The glycosidic bond is designated as α or β depending on where the sugar with the free anomeric carbon is located
 - $\begin{tabular}{ll} \hline & For example, in the image below, the disaccharide (maltose; made of 2 glucose molecules) is given α or β designation based on how the -OH group is oriented on the free anomeric carbon <math display="block"> \hline \end{tabular}$
 - The glycosidic bond between glucose molecules forming maltose is given α or β configuration depending on how the glucose with the free anomeric carbon (Right) is oriented relative to the glucose which participates in the glycosidic bond (Left). They are on the same side so the bond is α

- Monosaccharides can combine to form longer chains called oligosaccharides (3-10 sugar units) or polysaccharides (10+ sugar units)
- Polysaccharides, such as glycogen, consist of linear chains
 of glucose monomers in α(1→4) linkage, with α(1→6)
 branch points (The 1→4 just means the glycosidic bond is
 between carbons 1 and 4 of the 2 monosaccharides)
 - Animals store glucose primarily as glycogen
 - Plants store glucose as starch, made of amylose (polyglucose in α(1→4) linkages with few branch points) and amylopectin (polyglucose in α(1→4) linkages with α(1→6) branch points every 24 to 30 glucose units)

V LETTER TO THE STUDENT

Dear Student,

Thank you for opening this Biochemistry 2280A guidebook. This resource has been created by the Education Team at WebStraw. The Education Team consists of students that have previously taken and/or are currently taking Biochemistry 2280A.

Created by students for other students, this resource aims to provide a comprehensive view of material taught within this course. Our goal is to help students develop, solidify, and refine their understanding of course content. Our resource is also open access meaning there are no financial or legal barriers to students who wish to access and use our resource.

To maximize the benefits of this resource, we recommend that you read carefully through the topics, focusing on *bolded terminology*, *compound structures*, *and diagrams*. Although this resource ideally will cover all testable content as of the 2024-2025 academic year, we cannot guarantee this and strongly encourage you to cross-reference with class material and notes.

Disclaimer

This resource is supplementary to your course content and is not meant to (1) replace any of the resources provided to you by your instructor nor is it meant to (2) be used as a tool to learn the course material from scratch. We assume that students who use this resource will have a basic understanding of the course content. This resource does not contain everything you need to know for your evaluations. Please refer to the course material provided by your instructors if there are any discrepancies between our resource and your course content.

We appreciate you using our resource! Best of luck on your exams:)

-The WebStraw team

Note to Instructors: If this resource has been created for your course and you would like to collaborate with us, please email us at team@webstraw.org

biochem 2280.

BROUGHT TO YOU BY WEBSTRAW

a handmade guide

Ali Alimorad Sara Cordoba Reyes Lucy Yang Quynh Phi